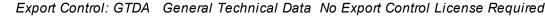


(1) ELM heat load simulations on W rods and (2) ITER Module 18

SNL Contributors:

Dennis Youchison Jimmie McDonald


Richard Nygren Fred Bauer

Tom Lutz Ken Troncosa

Mike Ulrickson

presented by: Richard Nygren

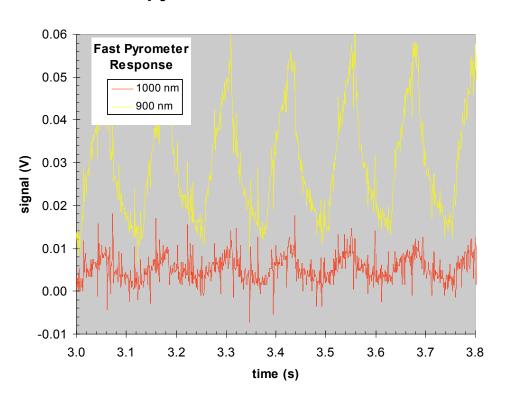
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.

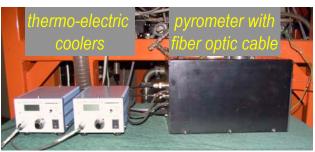
1) ELM heat load simulations on W rods - update

- 600kW beam fixes temperature of mockup.
- 150kW beam spot hits single rod for 2-5ms.

The ITER Team is interested in Sandia's testing of W rod armor with many (10K) ELM-like heat pulses. The tests will:

- 1) identify mechanisms for potential surface damage,
- 2) to complement ongoing Russian plasma gun tests.


- Testing itself has been delayed due to limitations in personnel, repair of equipment and priorities for other tasks (EBTS and ITER).
- •Oscillations in heat load (ripple in power supply) caused surface temperature fluctuations for 2-5 millisecond " ELM" pulses. This is unimportant for most tests but problematic in ELM heat load tests.
- We plan to resume testing in January.

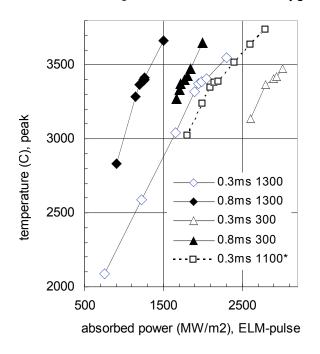

1) ELM heat load simulations - continued

Two important technology modifications

- Dennis Youchison modified the e-beam control to give more precise ~2ms dwell (time on target).
- Dennis also developed the "fix" to reduce noise on the fast pyrometer.

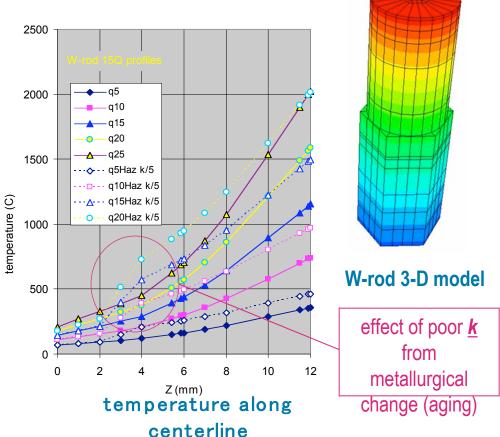
Don Long developed a fast (1MHz) 2-color pyrometer for disruption detection at PPPL.

We increased the time constant in the preamps to reduce noise and changed to thermoelectrically-cooled photodiodes, Hamamatsu model S2592


Curves show fast pyrometer channels at 900 and 1000nm tracking ~100ms heat pulses.

Novel high heat flux experiments using electron beam technology, DL Youchison et al. "E-Beam" Conference, Reno, Oct 2005

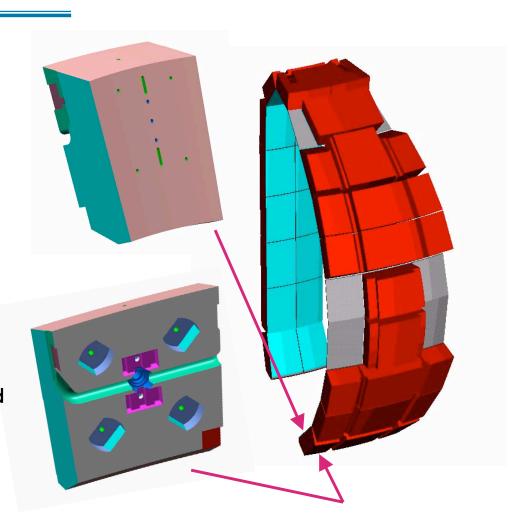
1) ELM heat load simulations - continued


Effort on thermal modeling continues for both ELM heat loads and steady state thermal response.

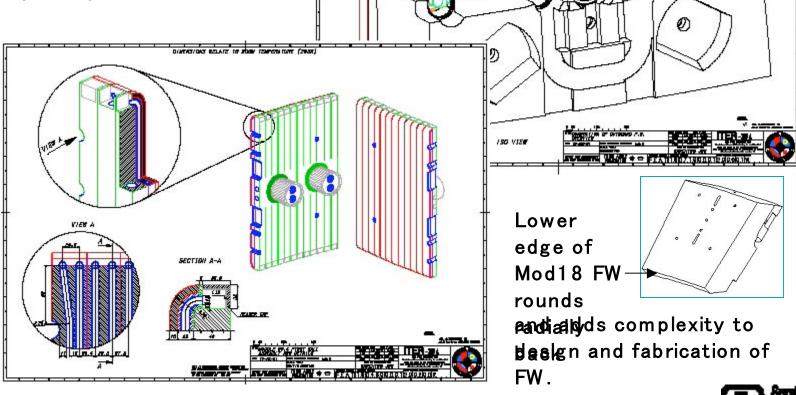
Thermal Modeling of W Rod Armor, RE Nygren, SOFT 2004

ELM heat load 2-D model PPI mockup V2-02-15Q

T_{peak} **vs. q**"_{abs}
T_{start}=302,1298°C; 300, 800μs
"0.3ms 1100*" is for 10mm rods



2) ITER Module 18

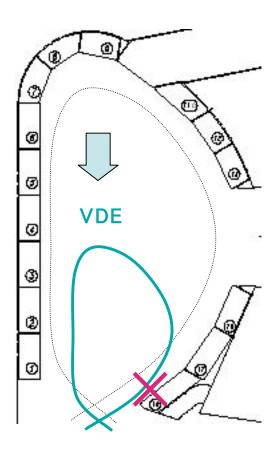

- * FW/Shield (Blanket) module bottom of outboard first wall 36 toroidal positions
- US commits to provide these units.

- Issues include:
 - -complex mounting/cooling
 - -heat loads, ELMs/VDEs and segmentation (EM loads)
 - -ports/penetrations

- Issues include:
 - complex mounting/cooling
 - -heat loads, ELMs/VDEs and segmentation (EM loads)
 - -ports/penetrations

LATERAL F. E. PAREZ

CENTRAL F.F. RAVEL

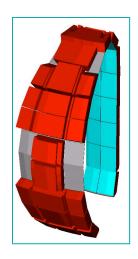

FEED THRO' ELBOW

4/28 A.

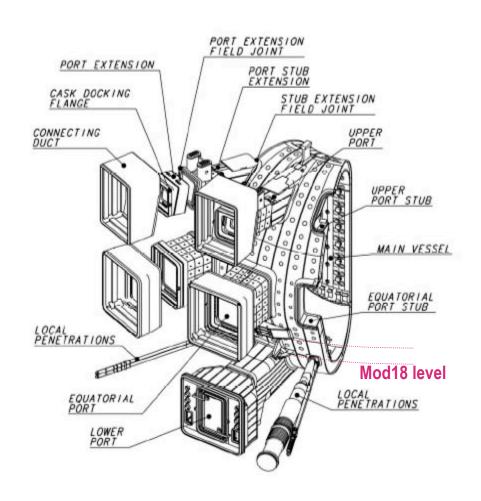
- Issues include:
 - -complex mounting/cooling
 - -heat loads ELMs/VDEs and
 segmentation (EM loads)
 - -ports/penetrations
 - Vertical Downward Disruptions (VDEs) will tend to hit Mode18, baff b and divertor causing EM loads and heat loads.
 - * Asymmetries in ELM heat loads

 ELMs make Mod18 more

 vulnerable.



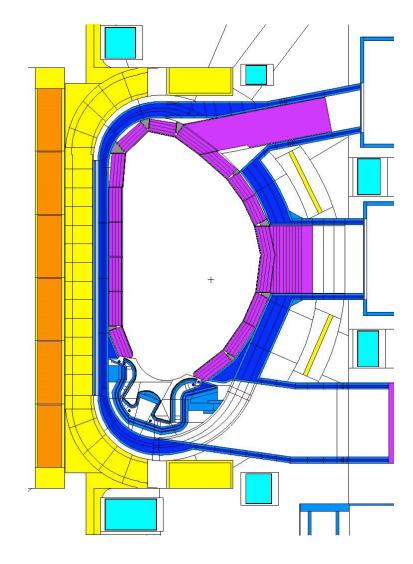
Issues include:


- -complex mounting/cooling
- -heat loads, ELMs/VDEs and segmentation (EM loads)

-ports/penetrations

In-vessel viewing + GDC, vertical neutron camera, bolometer views, ...

port	loca- tions	affected units
IVV/ GDC	6	12
VNC	1-2	1-2
Bolom.	4-6	4-6



Heat removal scheme

Design development and verification needed. Segmentation of Mod18 affects the design of the water (~25% of shield) and

coolant passages.
OPTIONS?: Coolant path is complicated. There is an EFDA alternative. The US might prefer a "casting-based" approach.

US milestone of a Conceptual Design of Mod18 in FY2005 will likely preclude the investigation of any design alternative.

Volumetric heating (neutronics)

Recent work (Nov. 2004) on

triangular support by Iida* et al.
"Nuclear Heat deposition in the Blanket and Vacuum Vessel by Monte Carlo nuclear analyses *ITER NakaNBeam

G. Ruvutuso, H. Iida, L. Petrizzi, NAG-171-15-11-00 15, Nov. 2000

ITER Module 18 – other comments

- * FW Partners host, US, China, Korea, RF, ??
- ITER website <u>www.itereu.de</u> access to design data, drawings ··· (with ITER account)
- Garching Nygren at IPP 7-10 days every 2 months link to good website for Garching from ITER
- Plan conceptual design of Mod18 in FY2005 (Mike Ulrickson presentation)

Our commitment to ITER is to deliver hardware that works.

We must: develop and confirm a workable design,
develop and qualify vendors,
develop fabrication and QA procedures,
identify and mobilize the talent we need in industry and
our research institutions and get commitment to

this project.

